Background: Glioblastoma growth impacts on the structure and physiology of peritumoral neuronal networks, altering the activity of pyramidal neurons which drives further tumor progression. It is therefore of paramount importance to identify glioma-induced changes in pyramidal neurons, since they represent a key therapeutic target. Methods: We longitudinal monitored visual evoked potentials after the orthotopic implant of murine glioma cells into the mouse occipital cortex. With laser microdissection we analysed layer II-III pyramidal neurons molecular profile and with Local Field Potentials (LFP) recordings we evaluated the propensity to seizures in glioma-bearing animals with respect to control mice. Results: We determine the time course of neuronal dysfunction of glioma-bearing mice and we identify a symptomatic stage, based on the decay of visual response. At that time point, we microdissect layer II-III pyramidal neurons and evaluate the expression of a panel of genes involved in synaptic transmission and neuronal excitability. Compared to the control group, peritumoral neurons show a decrease in the expression of the SNARE complex gene SNAP-25 and the alpha1 subunit of the GABA-A receptor. No significant changes are detected in glutamatergic (i.e., AMPA or NMDA receptor subunit) markers. Further reduction of GABA-A signalling by delivery of a benzodiazepine inverse agonist, DMCM (methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate) precipitates seizures in two mouse models of tumor-bearing mice. Conclusions: These studies reveal novel molecular changes that occur in the principal cells of the tumor-adjacent zone. These modifications may be therapeutically targeted to ameliorate patients' quality of life.

Molecular changes underlying decay of sensory responses and enhanced seizure propensity in peritumoral neurons

Meneghetti, Nicolò;Mazzoni, Alberto;
2023-01-01

Abstract

Background: Glioblastoma growth impacts on the structure and physiology of peritumoral neuronal networks, altering the activity of pyramidal neurons which drives further tumor progression. It is therefore of paramount importance to identify glioma-induced changes in pyramidal neurons, since they represent a key therapeutic target. Methods: We longitudinal monitored visual evoked potentials after the orthotopic implant of murine glioma cells into the mouse occipital cortex. With laser microdissection we analysed layer II-III pyramidal neurons molecular profile and with Local Field Potentials (LFP) recordings we evaluated the propensity to seizures in glioma-bearing animals with respect to control mice. Results: We determine the time course of neuronal dysfunction of glioma-bearing mice and we identify a symptomatic stage, based on the decay of visual response. At that time point, we microdissect layer II-III pyramidal neurons and evaluate the expression of a panel of genes involved in synaptic transmission and neuronal excitability. Compared to the control group, peritumoral neurons show a decrease in the expression of the SNARE complex gene SNAP-25 and the alpha1 subunit of the GABA-A receptor. No significant changes are detected in glutamatergic (i.e., AMPA or NMDA receptor subunit) markers. Further reduction of GABA-A signalling by delivery of a benzodiazepine inverse agonist, DMCM (methyl-6,7-dimethoxy-4-ethyl-beta-carboline-3-carboxylate) precipitates seizures in two mouse models of tumor-bearing mice. Conclusions: These studies reveal novel molecular changes that occur in the principal cells of the tumor-adjacent zone. These modifications may be therapeutically targeted to ameliorate patients' quality of life.
2023
File in questo prodotto:
File Dimensione Formato  
Molecular changes underlying decay of sensory responses and enhanced seizure propensity in peritumoral neurons.pdf

accesso aperto

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: Creative commons (selezionare)
Dimensione 783.27 kB
Formato Adobe PDF
783.27 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/555312
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact