: Objective.Intrafascicular peripheral nerve implants are key components in the development of bidirectional neuroprostheses such as touch-enabled bionic limbs for amputees. However, the durability of such interfaces is hindered by the immune response following the implantation. Among the causes linked to such reaction, the mechanical mismatch between host nerve and implant is thought to play a decisive role, especially in chronic settings.Approach.Here we focus on modeling mechanical stresses induced on the peripheral nerve by the implant's micromotion using finite element analysis. Through multiple parametric sweeps, we analyze the role of the implant's material, geometry (aspect-ratio and shape), and surface coating, deriving a set of parameters for the design of better-integrated implants.Main results.Our results indicate that peripheral nerve implants should be designed and manufactured with smooth edges, using materials at most three orders of magnitude stiffer than the nerve, and with innovative geometries to redistribute micromotion-associated loads to less delicate parts of the nerve such as the epineurium.Significance.Overall, our model is a useful tool for the peripheral nerve implant designer that is mindful of the importance of implant mechanics for long term applications.

A finite element model of the mechanical interactions between peripheral nerves and intrafascicular implants

Micera, Silvestro;De Simone, Antonio
2022-01-01

Abstract

: Objective.Intrafascicular peripheral nerve implants are key components in the development of bidirectional neuroprostheses such as touch-enabled bionic limbs for amputees. However, the durability of such interfaces is hindered by the immune response following the implantation. Among the causes linked to such reaction, the mechanical mismatch between host nerve and implant is thought to play a decisive role, especially in chronic settings.Approach.Here we focus on modeling mechanical stresses induced on the peripheral nerve by the implant's micromotion using finite element analysis. Through multiple parametric sweeps, we analyze the role of the implant's material, geometry (aspect-ratio and shape), and surface coating, deriving a set of parameters for the design of better-integrated implants.Main results.Our results indicate that peripheral nerve implants should be designed and manufactured with smooth edges, using materials at most three orders of magnitude stiffer than the nerve, and with innovative geometries to redistribute micromotion-associated loads to less delicate parts of the nerve such as the epineurium.Significance.Overall, our model is a useful tool for the peripheral nerve implant designer that is mindful of the importance of implant mechanics for long term applications.
2022
File in questo prodotto:
File Dimensione Formato  
Akouissi_2022_J._Neural_Eng._19_046017.pdf

accesso aperto

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Creative commons (selezionare)
Dimensione 1.85 MB
Formato Adobe PDF
1.85 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/556854
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
social impact