: Transthyretin (TTR) is a tetrameric protein synthesized mostly by the liver and secreted into the plasma. TTR molecules can misfold and form amyloid fibrils in the heart and peripheral nerves, either as a result of gene variants in TTR or as an ageing-related phenomenon, which can lead to amyloid TTR (ATTR) amyloidosis. Some of the proposed strategies to treat ATTR amyloidosis include blocking TTR synthesis in the liver, stabilizing TTR tetramers or disrupting TTR fibrils. Small interfering RNA (siRNA) or antisense oligonucleotide (ASO) technologies have been shown to be highly effective for the blockade of TTR expression in the liver in humans. The siRNA patisiran and the ASO inotersen have been approved for the treatment of patients with ATTR variant polyneuropathy, regardless of the presence and severity of ATTR cardiomyopathy. Preliminary data show that therapy with patisiran improves the cardiac phenotype rather than only inducing disease stabilization in patients with ATTR variant polyneuropathy and concomitant ATTR cardiomyopathy, and this drug is being evaluated in a phase III clinical trial in patients with ATTR cardiomyopathy. Furthermore, ongoing phase III clinical trials will evaluate another siRNA, vutrisiran, and a novel ASO formulation, eplontersen, in patients with ATTR variant polyneuropathy or ATTR cardiomyopathy. In this Review, we discuss these approaches for TTR silencing in the treatment of ATTR amyloidosis as well as the latest strategy of genome editing with CRISPR-Cas9 to reduce TTR gene expression.

RNA-targeting and gene editing therapies for transthyretin amyloidosis

Aimo, Alberto;Castiglione, Vincenzo;Franzini, Maria;Panichella, Giorgia;Vergaro, Giuseppe;Passino, Claudio;Emdin, Michele
2022-01-01

Abstract

: Transthyretin (TTR) is a tetrameric protein synthesized mostly by the liver and secreted into the plasma. TTR molecules can misfold and form amyloid fibrils in the heart and peripheral nerves, either as a result of gene variants in TTR or as an ageing-related phenomenon, which can lead to amyloid TTR (ATTR) amyloidosis. Some of the proposed strategies to treat ATTR amyloidosis include blocking TTR synthesis in the liver, stabilizing TTR tetramers or disrupting TTR fibrils. Small interfering RNA (siRNA) or antisense oligonucleotide (ASO) technologies have been shown to be highly effective for the blockade of TTR expression in the liver in humans. The siRNA patisiran and the ASO inotersen have been approved for the treatment of patients with ATTR variant polyneuropathy, regardless of the presence and severity of ATTR cardiomyopathy. Preliminary data show that therapy with patisiran improves the cardiac phenotype rather than only inducing disease stabilization in patients with ATTR variant polyneuropathy and concomitant ATTR cardiomyopathy, and this drug is being evaluated in a phase III clinical trial in patients with ATTR cardiomyopathy. Furthermore, ongoing phase III clinical trials will evaluate another siRNA, vutrisiran, and a novel ASO formulation, eplontersen, in patients with ATTR variant polyneuropathy or ATTR cardiomyopathy. In this Review, we discuss these approaches for TTR silencing in the treatment of ATTR amyloidosis as well as the latest strategy of genome editing with CRISPR-Cas9 to reduce TTR gene expression.
2022
File in questo prodotto:
File Dimensione Formato  
gene therapies.pdf

Open Access dal 13/01/2024

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Dominio pubblico
Dimensione 1.43 MB
Formato Adobe PDF
1.43 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/558829
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 70
social impact