Numerous neurorehabilitative, neuroprosthetic, and repair interventions aim to address the consequences of upper limb impairments after neurological disorders. Although these therapies target widely different mechanisms, they share the common need for a preclinical platform that supports the development, assessment, and understanding of the therapy. Here, we introduce a neurorobotic platform for rats that meets these requirements. A four-degree-of-freedom end effector is interfaced with the rat’s wrist, enabling unassisted to fully assisted execution of natural reaching and retrieval movements covering the entire body workspace. Multimodal recording capabilities permit precise quantification of upper limb movement recovery after spinal cord injury (SCI), which allowed us to uncover adaptations in corticospinal tract neuron dynamics underlying this recovery. Personalized movement assistance supported early neurorehabilitation that improved recovery after SCI. Last, the platform provided a well-controlled and practical environment to develop an implantable spinal cord neuroprosthesis that improved upper limb function after SCI.

Preclinical upper limb neurorobotic platform to assess, rehabilitate, and develop therapies

Pasquini M.;Lai S.;Carpaneto J.;Micera S.;
2022-01-01

Abstract

Numerous neurorehabilitative, neuroprosthetic, and repair interventions aim to address the consequences of upper limb impairments after neurological disorders. Although these therapies target widely different mechanisms, they share the common need for a preclinical platform that supports the development, assessment, and understanding of the therapy. Here, we introduce a neurorobotic platform for rats that meets these requirements. A four-degree-of-freedom end effector is interfaced with the rat’s wrist, enabling unassisted to fully assisted execution of natural reaching and retrieval movements covering the entire body workspace. Multimodal recording capabilities permit precise quantification of upper limb movement recovery after spinal cord injury (SCI), which allowed us to uncover adaptations in corticospinal tract neuron dynamics underlying this recovery. Personalized movement assistance supported early neurorehabilitation that improved recovery after SCI. Last, the platform provided a well-controlled and practical environment to develop an implantable spinal cord neuroprosthesis that improved upper limb function after SCI.
2022
File in questo prodotto:
File Dimensione Formato  
scirobotics.abk2378 (2).pdf

non disponibili

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Copyright dell'editore
Dimensione 4.25 MB
Formato Adobe PDF
4.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/558945
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
social impact