Vaginal delivery is one of the main causes of pelvic floor damage, which can lead to short- and long-term clinical consequences called pelvic floor dysfunctions. The number of women affected by this pathology is continuously rising, representing both a medical issue and an important financial burden. Prevention represents the best strategy of care, but it requires a deep understanding of the injury mechanisms, which is currently lacking. Simulation can help to identify the main factors affecting a clinical event, reducing the need for in vivo investigations. However, current simulators poorly mimic the pelvic structures and do not provide any feedback. These limitations led to the development of an innovative high-fidelity physical simulator to study the mechanisms behind pelvic floor damage caused by vaginal delivery. Anatomically correct gynecological structures were realized using soft materials able to resemble human tissue behavior. Ad hoc stretch sensors were realized with conductive fabric and integrated into the simulator to evaluate tissue elongation caused by the passage of the fetal head. Evaluation of the simulator was carried out both in laboratory conditions and by involving expert clinicians. Gynecologists determined that the simulator is a valid teaching and training tool that is able to provide feedback on instantaneous pelvic floor elongation, thus potentially preventing induced tissue damage.

Design, Realization, and Assessment of a High-Fidelity Physical Simulator for the Investigation of Childbirth-Induced Pelvic Floor Damage

Maglio, Sabina
;
Tognarelli, Selene;Menciassi, Arianna
2023-01-01

Abstract

Vaginal delivery is one of the main causes of pelvic floor damage, which can lead to short- and long-term clinical consequences called pelvic floor dysfunctions. The number of women affected by this pathology is continuously rising, representing both a medical issue and an important financial burden. Prevention represents the best strategy of care, but it requires a deep understanding of the injury mechanisms, which is currently lacking. Simulation can help to identify the main factors affecting a clinical event, reducing the need for in vivo investigations. However, current simulators poorly mimic the pelvic structures and do not provide any feedback. These limitations led to the development of an innovative high-fidelity physical simulator to study the mechanisms behind pelvic floor damage caused by vaginal delivery. Anatomically correct gynecological structures were realized using soft materials able to resemble human tissue behavior. Ad hoc stretch sensors were realized with conductive fabric and integrated into the simulator to evaluate tissue elongation caused by the passage of the fetal head. Evaluation of the simulator was carried out both in laboratory conditions and by involving expert clinicians. Gynecologists determined that the simulator is a valid teaching and training tool that is able to provide feedback on instantaneous pelvic floor elongation, thus potentially preventing induced tissue damage.
2023
File in questo prodotto:
File Dimensione Formato  
Design_Realization_and_Assessment_of_a_High-Fidelity_Physical_Simulator_for_the_Investigation_of_Childbirth-Induced_Pelvic_Floor_Damage.pdf

accesso aperto

Tipologia: PDF Editoriale
Licenza: Creative commons (selezionare)
Dimensione 1.53 MB
Formato Adobe PDF
1.53 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/562772
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact