The development of efficient and rapid methods for the identification with high sequence coverage of proteins is one of the most important goals of proteomic strategies today. The on-plate digestion of proteins is a very attractive approach, due to the possibility of coupling immobilized-enzymatic digestion with direct matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-mass spectrometry (MS) analysis. The crucial step in the development of on-plate immobilization is however the functionalization of the solid surface. Fungal self-assembling proteins, the hydrophobins, are able to efficiently functionalize surfaces. We have recently shown that such modified plates are able to absorb either peptides or proteins and are amenable to MALDI-TOF-MS analysis. In this paper, the hydrophobin-coatedMALDI sample plates were exploited as a lab-on-plate for noncovalent immobilization of enzymes commonly used in protein identification/characterization, such as trypsin, V8 protease, PNGaseF, and alkaline phosphatase. Rapid and efficient on-plate reactions were performed to achieve high sequence coverage of model proteins, particularly when performing multiple enzyme digestions. The possibility of exploiting this direct on-plate MALDI-TOF/TOF analysis has been investigated on model proteins and, as proof of concept, on entire whey milk proteome.

A simple MALDI plate functionalization by Vmh2 hydrophobin for serial multi-enzymatic protein digestions

FUNARI, RICCARDO;
2015-01-01

Abstract

The development of efficient and rapid methods for the identification with high sequence coverage of proteins is one of the most important goals of proteomic strategies today. The on-plate digestion of proteins is a very attractive approach, due to the possibility of coupling immobilized-enzymatic digestion with direct matrix-assisted laser desorption/ionization (MALDI)-time of flight (TOF)-mass spectrometry (MS) analysis. The crucial step in the development of on-plate immobilization is however the functionalization of the solid surface. Fungal self-assembling proteins, the hydrophobins, are able to efficiently functionalize surfaces. We have recently shown that such modified plates are able to absorb either peptides or proteins and are amenable to MALDI-TOF-MS analysis. In this paper, the hydrophobin-coatedMALDI sample plates were exploited as a lab-on-plate for noncovalent immobilization of enzymes commonly used in protein identification/characterization, such as trypsin, V8 protease, PNGaseF, and alkaline phosphatase. Rapid and efficient on-plate reactions were performed to achieve high sequence coverage of model proteins, particularly when performing multiple enzyme digestions. The possibility of exploiting this direct on-plate MALDI-TOF/TOF analysis has been investigated on model proteins and, as proof of concept, on entire whey milk proteome.
2015
File in questo prodotto:
File Dimensione Formato  
longobardi_anal_bioanal_chem_2014.pdf

solo utenti autorizzati

Tipologia: PDF Editoriale
Licenza: Copyright dell'editore
Dimensione 1.16 MB
Formato Adobe PDF
1.16 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/563652
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
social impact