Satellite-based precipitation estimates and global reanalysis products bear the promise of supporting the development of accurate and timely climate information for end users in sub-Sharan Africa. The accuracy of these global models, however, may be reduced in data-scarce regions and should be carefully evaluated. This study evaluates the performance of ERA5 reanalysis data and CHIRPS precipitation data against ground-based measurements from 167 rain gauges in Ethiopia, a region with complex topography and diverse climates. Focusing over a 38-year period (1981–2018), our study utilizes a point-to-pixel analysis to compare daily, monthly, seasonal, and annual precipitation data, conducting an evaluation based on continuous and categorical metrics. Our findings indicate that over Ethiopia CHIRPS generally outperforms ERA5, particularly in high-altitude areas, demonstrating a better capability in detecting high-intensity rainfall events. Both datasets, however, exhibit lower performance in Ethiopia's lowland regions, possibly the influence of sparse rain gauge networks informing gridded datasets. Notably, both CHIRPS and ERA5 were found to underestimate rainfall variability, with CHIRPS displaying a slight advantage in representing the erratic nature of Ethiopian rainfall. The study’s results highlight considerable performance differences between CHIRPS and ERA5 across varying Ethiopian landscapes and climatic conditions. CHIRPS’ effectiveness in high-altitude regions, especially for daily rainfall estimation, emphasizes its suitability in similar geographic contexts. Conversely, the lesser performance of ERA5 in these areas suggests a need for refined calibration and validation processes, particularly for complex terrains. These insights are essential for the application of satellite-based and reanalysis of rainfall data in meteorological, agricultural, and hydrological contexts, particularly in topographically and climatically diverse regions.

Evaluation of ERA5 and CHIRPS rainfall estimates against observations across Ethiopia

Ahmed, Jemal Seid
Writing – Original Draft Preparation
;
Buizza, Roberto
Writing – Review & Editing
;
Dell’Acqua, Matteo
Writing – Review & Editing
;
2024-01-01

Abstract

Satellite-based precipitation estimates and global reanalysis products bear the promise of supporting the development of accurate and timely climate information for end users in sub-Sharan Africa. The accuracy of these global models, however, may be reduced in data-scarce regions and should be carefully evaluated. This study evaluates the performance of ERA5 reanalysis data and CHIRPS precipitation data against ground-based measurements from 167 rain gauges in Ethiopia, a region with complex topography and diverse climates. Focusing over a 38-year period (1981–2018), our study utilizes a point-to-pixel analysis to compare daily, monthly, seasonal, and annual precipitation data, conducting an evaluation based on continuous and categorical metrics. Our findings indicate that over Ethiopia CHIRPS generally outperforms ERA5, particularly in high-altitude areas, demonstrating a better capability in detecting high-intensity rainfall events. Both datasets, however, exhibit lower performance in Ethiopia's lowland regions, possibly the influence of sparse rain gauge networks informing gridded datasets. Notably, both CHIRPS and ERA5 were found to underestimate rainfall variability, with CHIRPS displaying a slight advantage in representing the erratic nature of Ethiopian rainfall. The study’s results highlight considerable performance differences between CHIRPS and ERA5 across varying Ethiopian landscapes and climatic conditions. CHIRPS’ effectiveness in high-altitude regions, especially for daily rainfall estimation, emphasizes its suitability in similar geographic contexts. Conversely, the lesser performance of ERA5 in these areas suggests a need for refined calibration and validation processes, particularly for complex terrains. These insights are essential for the application of satellite-based and reanalysis of rainfall data in meteorological, agricultural, and hydrological contexts, particularly in topographically and climatically diverse regions.
2024
File in questo prodotto:
File Dimensione Formato  
s00703-024-01008-0.pdf

accesso aperto

Descrizione: Ahmed J. S. et. al., 2024
Tipologia: PDF Editoriale
Licenza: Copyright dell'editore
Dimensione 10.37 MB
Formato Adobe PDF
10.37 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/565033
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact