Composites containing bio-based materials, like banana fiber and poly(lactic acid) (PLA), are potential food-packaging materials. We carried out an environmental life cycle assessment (LCA) of coffee jar lids made from high density polyethylene (HDPE), PLA, and banana fiber to assess their environmental performance. We considered differences in the type of blend (content of PLA and banana fiber in the composite), origin of the banana fiber feedstock (considered as either biowaste or as a co-product from banana production) and banana fiber pretreatment conditions (either no pretreatment or pretreatment using chemicals). Irrespective of the scenario, a lid made from 40% banana fiber and equal amounts of HDPE and PLA performed significantly better in all 18 impact categories when compared to a lid made from 100% PLA. By contrast, the same lid performed significantly better in 3 impact categories only (climate change, photochemical oxidant formation and fossil depletion) when compared to a lid made from 100% HDPE. Thus, environmental performance of the biocomposite strongly depends on which polymer base is replaced by the banana fiber in the composite. Replacing PLA with banana fiber is generally expected to bring environmental benefits.

Comparative life cycle assessment of coffee jar lids made from biocomposites containing poly(lactic acid) and banana fiber

Fabbri, Serena
Secondo
;
2020-01-01

Abstract

Composites containing bio-based materials, like banana fiber and poly(lactic acid) (PLA), are potential food-packaging materials. We carried out an environmental life cycle assessment (LCA) of coffee jar lids made from high density polyethylene (HDPE), PLA, and banana fiber to assess their environmental performance. We considered differences in the type of blend (content of PLA and banana fiber in the composite), origin of the banana fiber feedstock (considered as either biowaste or as a co-product from banana production) and banana fiber pretreatment conditions (either no pretreatment or pretreatment using chemicals). Irrespective of the scenario, a lid made from 40% banana fiber and equal amounts of HDPE and PLA performed significantly better in all 18 impact categories when compared to a lid made from 100% PLA. By contrast, the same lid performed significantly better in 3 impact categories only (climate change, photochemical oxidant formation and fossil depletion) when compared to a lid made from 100% HDPE. Thus, environmental performance of the biocomposite strongly depends on which polymer base is replaced by the banana fiber in the composite. Replacing PLA with banana fiber is generally expected to bring environmental benefits.
2020
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0301479720304278-main.pdf

solo utenti autorizzati

Descrizione: Journal article
Tipologia: Documento in Post-print/Accepted manuscript
Licenza: Copyright dell'editore
Dimensione 2.22 MB
Formato Adobe PDF
2.22 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/572883
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
social impact