Laser-induced graphene (LIG) has been so far obtained from polymer precursors and proposed for numerous applications, including various types of sensors and energy storage solutions. This study examines a radically different class of new precursors for LIG, distinct from polymers: inks and dyes. The identification of specific organic dyes present in commercial markers demonstrates that the aromatic structure, in conjunction with high thermal stability (residual weight > 20% at 800°C), are key factors for laser-induced pyrolysis. Eosin Y is identified as an excellent LIG precursor, comparable with well-known polyimide. The unique properties of dyes allow for dispersion in various media, such as acrylic binder. A dye concentration of 0.75 mol L−1 in acrylic binder results in a conductivity of 34 ± 20 S cm−1 for LIG. The composition and microstructure of LIG from dyes are thoroughly characterized, revealing peculiar features. A versatile “Paint & Scribe” methodology is introduced, enabling to integrate LIG tracks onto any wettable surface, and in particular onto printed and flexible electronics. A process for obtaining freestanding and transferrable LIG is demonstrated by dissolving acrylic paint in acetone and floating LIG in water. This advancement offers novel avenues for diverse applications that necessitate a transfer process of LIG.
Laser‐Induced Graphene from Commercial Inks and Dyes
Sankaran, Sreenadh Thaikkattu;Galliani, Marina;Greco, Francesco
2025-01-01
Abstract
Laser-induced graphene (LIG) has been so far obtained from polymer precursors and proposed for numerous applications, including various types of sensors and energy storage solutions. This study examines a radically different class of new precursors for LIG, distinct from polymers: inks and dyes. The identification of specific organic dyes present in commercial markers demonstrates that the aromatic structure, in conjunction with high thermal stability (residual weight > 20% at 800°C), are key factors for laser-induced pyrolysis. Eosin Y is identified as an excellent LIG precursor, comparable with well-known polyimide. The unique properties of dyes allow for dispersion in various media, such as acrylic binder. A dye concentration of 0.75 mol L−1 in acrylic binder results in a conductivity of 34 ± 20 S cm−1 for LIG. The composition and microstructure of LIG from dyes are thoroughly characterized, revealing peculiar features. A versatile “Paint & Scribe” methodology is introduced, enabling to integrate LIG tracks onto any wettable surface, and in particular onto printed and flexible electronics. A process for obtaining freestanding and transferrable LIG is demonstrated by dissolving acrylic paint in acetone and floating LIG in water. This advancement offers novel avenues for diverse applications that necessitate a transfer process of LIG.File | Dimensione | Formato | |
---|---|---|---|
Advanced Science - 2025 - Dallinger - Laser‐Induced Graphene from Commercial Inks and Dyes.pdf
accesso aperto
Tipologia:
PDF Editoriale
Licenza:
Creative commons (selezionare)
Dimensione
5.28 MB
Formato
Adobe PDF
|
5.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.