Mitochondria are essential organelles that regulate cellular energy metabolism, redox balance, and signaling pathways related to proliferation, aging and survival. So far, significant interspecies differences exist in mitochondrial structure, function, and dynamics, which have critical implications for cardiovascular physiology and pharmacology. This review explores the main differences in mitochondrial properties across species of animals that are commonly used for translational research, emphasizing their cardiac and vascular relevance. By addressing key interspecies differences, including mitochondrial DNA (mtDNA) variation, bioenergetic profile, oxidative stress response, epigenetic regulation, mitochondrial biogenesis, and adaptive mechanisms, we aim to provide insights into the challenges and opportunities in translating preclinical findings to clinical applications. Understanding these interspecies differences is essential for optimizing the design and interpretation of preclinical studies and for developing effective mitochondrial-targeted therapies.

Interspecies differences in mitochondria: Implications for cardiac and vascular translational research

Lisa Alibrandi
Primo
;
Vincenzo Lionetti
Ultimo
2025-01-01

Abstract

Mitochondria are essential organelles that regulate cellular energy metabolism, redox balance, and signaling pathways related to proliferation, aging and survival. So far, significant interspecies differences exist in mitochondrial structure, function, and dynamics, which have critical implications for cardiovascular physiology and pharmacology. This review explores the main differences in mitochondrial properties across species of animals that are commonly used for translational research, emphasizing their cardiac and vascular relevance. By addressing key interspecies differences, including mitochondrial DNA (mtDNA) variation, bioenergetic profile, oxidative stress response, epigenetic regulation, mitochondrial biogenesis, and adaptive mechanisms, we aim to provide insights into the challenges and opportunities in translating preclinical findings to clinical applications. Understanding these interspecies differences is essential for optimizing the design and interpretation of preclinical studies and for developing effective mitochondrial-targeted therapies.
2025
File in questo prodotto:
File Dimensione Formato  
Alibrandi Lionetti_VPH_107476.pdf

solo utenti autorizzati

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: Copyright dell'editore
Dimensione 650.44 kB
Formato Adobe PDF
650.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/578532
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact