Mitochondria are essential organelles that regulate cellular energy metabolism, redox balance, and signaling pathways related to proliferation, aging and survival. So far, significant interspecies differences exist in mitochondrial structure, function, and dynamics, which have critical implications for cardiovascular physiology and pharmacology. This review explores the main differences in mitochondrial properties across species of animals that are commonly used for translational research, emphasizing their cardiac and vascular relevance. By addressing key interspecies differences, including mitochondrial DNA (mtDNA) variation, bioenergetic profile, oxidative stress response, epigenetic regulation, mitochondrial biogenesis, and adaptive mechanisms, we aim to provide insights into the challenges and opportunities in translating preclinical findings to clinical applications. Understanding these interspecies differences is essential for optimizing the design and interpretation of preclinical studies and for developing effective mitochondrial-targeted therapies.
Interspecies differences in mitochondria: Implications for cardiac and vascular translational research
Lisa AlibrandiPrimo
;Vincenzo Lionetti
Ultimo
2025-01-01
Abstract
Mitochondria are essential organelles that regulate cellular energy metabolism, redox balance, and signaling pathways related to proliferation, aging and survival. So far, significant interspecies differences exist in mitochondrial structure, function, and dynamics, which have critical implications for cardiovascular physiology and pharmacology. This review explores the main differences in mitochondrial properties across species of animals that are commonly used for translational research, emphasizing their cardiac and vascular relevance. By addressing key interspecies differences, including mitochondrial DNA (mtDNA) variation, bioenergetic profile, oxidative stress response, epigenetic regulation, mitochondrial biogenesis, and adaptive mechanisms, we aim to provide insights into the challenges and opportunities in translating preclinical findings to clinical applications. Understanding these interspecies differences is essential for optimizing the design and interpretation of preclinical studies and for developing effective mitochondrial-targeted therapies.File | Dimensione | Formato | |
---|---|---|---|
Alibrandi Lionetti_VPH_107476.pdf
solo utenti autorizzati
Tipologia:
Documento in Post-print/Accepted manuscript
Licenza:
Copyright dell'editore
Dimensione
650.44 kB
Formato
Adobe PDF
|
650.44 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.