In this study, we explore the potential of ten quantitative (radiofrequency-based) ultrasound parameters to assess the progressive loss of collagen and proteoglycans, mimicking an osteoarthritis condition in ex-vivo bovine cartilage samples. Most analyzed metrics showed significant changes as the degradation progressed, especially with collagenase treatment. We propose for the first time a combination of these ultrasound parameters through machine learning models aimed at automatically identifying healthy and degraded cartilage samples. The random forest model showed good performance in distinguishing healthy cartilage from trypsin-treated samples, with an accuracy of 60%. The support vector machine demonstrated excellent accuracy (96%) in differentiating healthy cartilage from collagenase-degraded samples. Histological and mechanical analyses further confirmed these findings, with collagenase having a more pronounced impact on both mechanical and histological properties, compared to trypsin. These metrics were obtained using an ultrasound probe having a transmission frequency of 15 MHz, typically used for the diagnosis of musculoskeletal diseases, enabling a fully non-invasive procedure without requiring arthroscopic probes. As a perspective, the proposed quantitative ultrasound assessment has the potential to become a new standard for monitoring cartilage health, enabling the early detection of cartilage pathologies and timely interventions.

Quantitative ultrasound classification of healthy and chemically degraded ex-vivo cartilage

Sorriento, Angela;Guachi-Guachi, Lorena;Turini, Claudia;Ricotti, Leonardo;Cafarelli, Andrea
2025-01-01

Abstract

In this study, we explore the potential of ten quantitative (radiofrequency-based) ultrasound parameters to assess the progressive loss of collagen and proteoglycans, mimicking an osteoarthritis condition in ex-vivo bovine cartilage samples. Most analyzed metrics showed significant changes as the degradation progressed, especially with collagenase treatment. We propose for the first time a combination of these ultrasound parameters through machine learning models aimed at automatically identifying healthy and degraded cartilage samples. The random forest model showed good performance in distinguishing healthy cartilage from trypsin-treated samples, with an accuracy of 60%. The support vector machine demonstrated excellent accuracy (96%) in differentiating healthy cartilage from collagenase-degraded samples. Histological and mechanical analyses further confirmed these findings, with collagenase having a more pronounced impact on both mechanical and histological properties, compared to trypsin. These metrics were obtained using an ultrasound probe having a transmission frequency of 15 MHz, typically used for the diagnosis of musculoskeletal diseases, enabling a fully non-invasive procedure without requiring arthroscopic probes. As a perspective, the proposed quantitative ultrasound assessment has the potential to become a new standard for monitoring cartilage health, enabling the early detection of cartilage pathologies and timely interventions.
2025
File in questo prodotto:
File Dimensione Formato  
s41598-025-07827-4.pdf

accesso aperto

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Copyright dell'editore
Dimensione 2.26 MB
Formato Adobe PDF
2.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/580533
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact