The combination of photoacoustic imaging (PAI) and photothermal therapy (PTT) is an attractive approach in cancer management due to the non-invasive features combined with real-time imaging and selective tissue damage by non-ionizing radiation. This approach is especially appealing for Head and Neck Squamous Cell Carcinoma (HNSCC) management, where up to 40% of patients require modifications of the treatment regimen. On the other hand, most of the agents developed for PAI/PTT suffer from persistence or re-shaping issues. Here, a unique non-persistent plasmon nano-architecture (tNAs-IRDye) is presented that simultaneously acts as a contrast agent for PAI and as a photothermal transducer for PTT. The tNAs-IRDye are fully characterized and evaluated in vitro and ex vivo, and their performance as theranostic agents is assessed in HPV-negative HNSCC murine models. A significant modulation of tumor growth is obtained in vivo upon intratumoral injection of tNAs-IRDye and subsequent NIR irradiation compared to the solely irradiated control. The outcomes of this study exhibit a noteworthy potential to foster the development of innovative clinical strategies for the management of HPV-negative head and neck carcinoma.
In Vivo Combined Photoacoustic Imaging and Photothermal Treatment of HPV‐Negative Head and Neck Carcinoma with NIR‐Responsive Non‐Persistent Plasmon Nano‐Architectures
Frusca, Valentina;Menichetti, Luca;
2024-01-01
Abstract
The combination of photoacoustic imaging (PAI) and photothermal therapy (PTT) is an attractive approach in cancer management due to the non-invasive features combined with real-time imaging and selective tissue damage by non-ionizing radiation. This approach is especially appealing for Head and Neck Squamous Cell Carcinoma (HNSCC) management, where up to 40% of patients require modifications of the treatment regimen. On the other hand, most of the agents developed for PAI/PTT suffer from persistence or re-shaping issues. Here, a unique non-persistent plasmon nano-architecture (tNAs-IRDye) is presented that simultaneously acts as a contrast agent for PAI and as a photothermal transducer for PTT. The tNAs-IRDye are fully characterized and evaluated in vitro and ex vivo, and their performance as theranostic agents is assessed in HPV-negative HNSCC murine models. A significant modulation of tumor growth is obtained in vivo upon intratumoral injection of tNAs-IRDye and subsequent NIR irradiation compared to the solely irradiated control. The outcomes of this study exhibit a noteworthy potential to foster the development of innovative clinical strategies for the management of HPV-negative head and neck carcinoma.| File | Dimensione | Formato | |
|---|---|---|---|
|
Advanced Therapeutics - 2024 - Frusca - In Vivo Combined Photoacoustic Imaging and Photothermal Treatment of HPV‐Negative.pdf
accesso aperto
Tipologia:
Documento in Pre-print/Submitted manuscript
Licenza:
Dominio pubblico
Dimensione
2.59 MB
Formato
Adobe PDF
|
2.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

