The Multiprocessor Bandwidth Inheritance (M-BWI) protocol is an extension of the Bandwidth Inheritance (BWI) protocol for symmetric multiprocessor systems. Similar to Priority Inheritance, M-BWI lets a task that has locked a resource execute in the resource reservations of the blocked tasks, thus reducing their blocking time. The protocol is particularly suitable for open systems where different kinds of tasks dynamically arrive and leave, because it guarantees temporal isolation among independent subsets of tasks without requiring any information on their temporal parameters. Additionally, if the temporal parameters of the interacting tasks are known, it is possible to compute an upper bound to the interference suffered by a task due to other interacting tasks. Thus, it is possible to provide timing guarantees for a subset of interacting hard real-time tasks. Finally, the M-BWI protocol is neutral to the underlying scheduling policy: it can be implemented in global, clustered and semi-partitioned scheduling. After introducing the M-BWI protocol, in this paper we formally prove its isolation properties, and propose an algorithm to compute an upper bound to the interference suffered by a task. Then, we describe our implementation of the protocol for the LITMUS RT real-time testbed, and measure its overhead. Finally, we compare M-BWI against FMLP and OMLP, two other protocols for resource sharing in multiprocessor systems.

Analysis and implementation of the multiprocessor bandwidth inheritance protocol

LIPARI, Giuseppe;CUCINOTTA, TOMMASO
2012-01-01

Abstract

The Multiprocessor Bandwidth Inheritance (M-BWI) protocol is an extension of the Bandwidth Inheritance (BWI) protocol for symmetric multiprocessor systems. Similar to Priority Inheritance, M-BWI lets a task that has locked a resource execute in the resource reservations of the blocked tasks, thus reducing their blocking time. The protocol is particularly suitable for open systems where different kinds of tasks dynamically arrive and leave, because it guarantees temporal isolation among independent subsets of tasks without requiring any information on their temporal parameters. Additionally, if the temporal parameters of the interacting tasks are known, it is possible to compute an upper bound to the interference suffered by a task due to other interacting tasks. Thus, it is possible to provide timing guarantees for a subset of interacting hard real-time tasks. Finally, the M-BWI protocol is neutral to the underlying scheduling policy: it can be implemented in global, clustered and semi-partitioned scheduling. After introducing the M-BWI protocol, in this paper we formally prove its isolation properties, and propose an algorithm to compute an upper bound to the interference suffered by a task. Then, we describe our implementation of the protocol for the LITMUS RT real-time testbed, and measure its overhead. Finally, we compare M-BWI against FMLP and OMLP, two other protocols for resource sharing in multiprocessor systems.
2012
File in questo prodotto:
File Dimensione Formato  
RTSJ-2012.pdf

accesso aperto

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Licenza non conosciuta
Dimensione 365.46 kB
Formato Adobe PDF
365.46 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/371232
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
social impact