Computerized machine knitting offers an attractive fabrication technology for incorporating wearable assistive devices into garments. In this work, we utilized, for the first time, whole-garment knitting techniques to manufacture a seamless fully knitted pneumatic bending actuator, which represents an advancement to existing cut-and-sew manufacturing techniques. Various machine knitting parameters were investigated to create anisotropic actuator structures, which exhibited a range of bending and extension motions when pressurized with air. The functionality of the actuator was demonstrated through integration into an assistive glove for hand grip action. The achieved curvature range when pressurizing the actuators up to 150 kPa was sufficient to grasp objects down to 3 cm in diameter and up to 125 g in weight. This manufacturing technique is rapid and scalable, paving the way for mass-production of customizable soft robotics wearables.

Machine-Knitted Seamless Pneumatic Actuators for Soft Robotics: Design, Fabrication, and Characterization

Leonardo Cappello;
2021-01-01

Abstract

Computerized machine knitting offers an attractive fabrication technology for incorporating wearable assistive devices into garments. In this work, we utilized, for the first time, whole-garment knitting techniques to manufacture a seamless fully knitted pneumatic bending actuator, which represents an advancement to existing cut-and-sew manufacturing techniques. Various machine knitting parameters were investigated to create anisotropic actuator structures, which exhibited a range of bending and extension motions when pressurized with air. The functionality of the actuator was demonstrated through integration into an assistive glove for hand grip action. The achieved curvature range when pressurizing the actuators up to 150 kPa was sufficient to grasp objects down to 3 cm in diameter and up to 125 g in weight. This manufacturing technique is rapid and scalable, paving the way for mass-production of customizable soft robotics wearables.
2021
File in questo prodotto:
File Dimensione Formato  
actuators-10-00094-v2.pdf

accesso aperto

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: Creative commons (selezionare)
Dimensione 6.8 MB
Formato Adobe PDF
6.8 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/546753
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
social impact