Despite more than thirty-five years of research on wearable technologies to assist the upper-limb and a multitude of promising preliminary results, the goal of restoring pre-impairment quality of life of people with physical disabilities has not been fully reached yet. Whether it is for rehabilitation or for assistance, nowadays robotics is still only used in a few high-tech clinics and hospitals, limiting the access to a small amount of people. This work provides a description of the three major 'revolutions' occurred in the field (end-effector robots, rigid exoskeletons, and soft exosuits), reviewing forty-eight systems for the upper-limb (excluding hand-only devices) used in eighty-nine studies enrolling a clinical population before June 2022. The review critically discusses the state of the art, analyzes the different technologies, and compares the clinical outcomes, with the goal of determine new potential directions to follow.

Wearable Robotics for Impaired Upper-Limb Assistance and Rehabilitation: State of the Art and Future Perspectives

Proietti T.;Micera S.
2022-01-01

Abstract

Despite more than thirty-five years of research on wearable technologies to assist the upper-limb and a multitude of promising preliminary results, the goal of restoring pre-impairment quality of life of people with physical disabilities has not been fully reached yet. Whether it is for rehabilitation or for assistance, nowadays robotics is still only used in a few high-tech clinics and hospitals, limiting the access to a small amount of people. This work provides a description of the three major 'revolutions' occurred in the field (end-effector robots, rigid exoskeletons, and soft exosuits), reviewing forty-eight systems for the upper-limb (excluding hand-only devices) used in eighty-nine studies enrolling a clinical population before June 2022. The review critically discusses the state of the art, analyzes the different technologies, and compares the clinical outcomes, with the goal of determine new potential directions to follow.
2022
File in questo prodotto:
File Dimensione Formato  
IEEE_Access_final.pdf

accesso aperto

Tipologia: PDF Editoriale
Licenza: Copyright dell'editore
Dimensione 4.66 MB
Formato Adobe PDF
4.66 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/552172
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
social impact