Purpose: Fetoscopic laser photocoagulation of placental anastomoses is the most effective treatment for twin-to-twin transfusion syndrome (TTTS). A robust mosaic of placenta and its vascular network could support surgeons' exploration of the placenta by enlarging the fetoscope field-of-view. In this work, we propose a learning-based framework for field-of-view expansion from intra-operative video frames. Methods: While current state of the art for fetoscopic mosaicking builds upon the registration of anatomical landmarks which may not always be visible, our framework relies on learning-based features and keypoints, as well as robust transformer-based image-feature matching, without requiring any anatomical priors. We further address the problem of occlusion recovery and frame relocalization, relying on the computed features and their descriptors. Results: Experiments were conducted on 10 in-vivo TTTS videos from two different fetal surgery centers. The proposed framework was compared with several state-of-the-art approaches, achieving higher [Formula: see text] on 7 out of 10 videos and a success rate of [Formula: see text] in occlusion recovery. Conclusion: This work introduces a learning-based framework for placental mosaicking with occlusion recovery from intra-operative videos using a keypoint-based strategy and features. The proposed framework can compute the placental panorama and recover even in case of camera tracking loss where other methods fail. The results suggest that the proposed framework has large potential to pave the way to creating a surgical navigation system for TTTS by providing robust field-of-view expansion.
Toward a navigation framework for fetoscopy
Moccia, Sara;
2023-01-01
Abstract
Purpose: Fetoscopic laser photocoagulation of placental anastomoses is the most effective treatment for twin-to-twin transfusion syndrome (TTTS). A robust mosaic of placenta and its vascular network could support surgeons' exploration of the placenta by enlarging the fetoscope field-of-view. In this work, we propose a learning-based framework for field-of-view expansion from intra-operative video frames. Methods: While current state of the art for fetoscopic mosaicking builds upon the registration of anatomical landmarks which may not always be visible, our framework relies on learning-based features and keypoints, as well as robust transformer-based image-feature matching, without requiring any anatomical priors. We further address the problem of occlusion recovery and frame relocalization, relying on the computed features and their descriptors. Results: Experiments were conducted on 10 in-vivo TTTS videos from two different fetal surgery centers. The proposed framework was compared with several state-of-the-art approaches, achieving higher [Formula: see text] on 7 out of 10 videos and a success rate of [Formula: see text] in occlusion recovery. Conclusion: This work introduces a learning-based framework for placental mosaicking with occlusion recovery from intra-operative videos using a keypoint-based strategy and features. The proposed framework can compute the placental panorama and recover even in case of camera tracking loss where other methods fail. The results suggest that the proposed framework has large potential to pave the way to creating a surgical navigation system for TTTS by providing robust field-of-view expansion.File | Dimensione | Formato | |
---|---|---|---|
s11548-023-02974-3.pdf
non disponibili
Tipologia:
Documento in Pre-print/Submitted manuscript
Licenza:
Copyright dell'editore
Dimensione
1.64 MB
Formato
Adobe PDF
|
1.64 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.