Pesticide exposure, even at low doses, can have detrimental effects on ecosystems. This study aimed at validating the use of machine learning for recognizing motor anomalies, produced by minimal insecticide exposure on a model insect species. The Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), was exposed to food contaminated with low concentrations of Carlina acaulis essential oil (EO). A deep learning approach enabled fly pose estimation on video recordings in a custom-built arena. Five machine learning algorithms were trained on handcrafted features, extracted from the predicted pose, to distinguish treated individuals. Random Forest and K-Nearest Neighbor algorithms best performed, with an area under the receiver operating characteristic (ROC) curve of 0.75 and 0.73, respectively. Both algorithms achieved an accuracy of 0.71. Results show the machine learning potential for detecting sublethal effects arising from insecticide exposure on fly motor behavior, which could also affect other organisms and environmental health.

Learning algorithms estimate pose and detect motor anomalies in flies exposed to minimal doses of a toxicant

Manduca G.
;
Moccia S.;Milano B. A.;Stefanini C.;Romano D.
2023-01-01

Abstract

Pesticide exposure, even at low doses, can have detrimental effects on ecosystems. This study aimed at validating the use of machine learning for recognizing motor anomalies, produced by minimal insecticide exposure on a model insect species. The Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), was exposed to food contaminated with low concentrations of Carlina acaulis essential oil (EO). A deep learning approach enabled fly pose estimation on video recordings in a custom-built arena. Five machine learning algorithms were trained on handcrafted features, extracted from the predicted pose, to distinguish treated individuals. Random Forest and K-Nearest Neighbor algorithms best performed, with an area under the receiver operating characteristic (ROC) curve of 0.75 and 0.73, respectively. Both algorithms achieved an accuracy of 0.71. Results show the machine learning potential for detecting sublethal effects arising from insecticide exposure on fly motor behavior, which could also affect other organisms and environmental health.
2023
File in questo prodotto:
File Dimensione Formato  
Manduca et al_iScience_2023.pdf

accesso aperto

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: Creative commons (selezionare)
Dimensione 3.46 MB
Formato Adobe PDF
3.46 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/561114
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
social impact