This paper presents a new Model of Computation (MoC) for real-time tasks used in control systems. This new model, named continuous stream task model, relaxes some of the constraints imposed by the traditional hard and soft real-time task models. A key advantage of the model is the possibility to easily analyse the probabilistic evolution of the delays. This leads to an easy formalisation of necessary and sufficient conditions for the stochastic stability of the closed loop system producing considerable savings in the amount of CPU bandwidth required to stabilise the system. This fact is confirmed by an extensive set of simulations. © 2013 IEEE.

The continuous stream model of computation for real-time control

ABENI, LUCA
2013-01-01

Abstract

This paper presents a new Model of Computation (MoC) for real-time tasks used in control systems. This new model, named continuous stream task model, relaxes some of the constraints imposed by the traditional hard and soft real-time task models. A key advantage of the model is the possibility to easily analyse the probabilistic evolution of the delays. This leads to an easy formalisation of necessary and sufficient conditions for the stochastic stability of the closed loop system producing considerable savings in the amount of CPU bandwidth required to stabilise the system. This fact is confirmed by an extensive set of simulations. © 2013 IEEE.
2013
9781479920075
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/514157
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
social impact