The tissue composition and microstructures of plants have dynamic morphologies that change according to their environments. Recently, multifunctional responsive materials and smart structures also took inspiration from these plants' features. Dionaea muscipula leaves provide a remarkable example of an optimized structure that, owing to the synergistic integration of bistability, material, and geometrical properties, permits to overcome the performance limits of purely diffusive processes. In this paper, a hygroscopic bistable structure (HBS) inspired by the Venus flytrap leaves is presented, obtained by bonding prestretched poly(dimethylsiloxane) (PDMS) layers prior to depositing electrospun polyethylene oxide (PEO) nanofibers. A hygroresponsive bilayer (HBL) is also obtained by electrospinning of PEO on an unstretched PDMS layer. The hygroscopic material (Young's modulus and hygroscopic expansion) is mechanically characterized so as to predict the response time of a bending HBL in response to a step humidity variation. The HBS response time (≈1 s) is sensibly lower than the one of purely diffusive HBL (≈10 s) thanks to bistability. An illustrative implementation is also presented, exploiting an HBS to trigger the curvature of a PDMS optical focusing system. The developed plant-inspired soft bistable structure can also be used for sensing (e.g., humidity), energy harvesting, as well as advanced soft robotics applications.

Plant-Inspired Soft Bistable Structures Based on Hygroscopic Electrospun Nanofibers

Lunni D.;Cianchetti M.;Filippeschi C.;Sinibaldi E.;Mazzolai B.
2020-01-01

Abstract

The tissue composition and microstructures of plants have dynamic morphologies that change according to their environments. Recently, multifunctional responsive materials and smart structures also took inspiration from these plants' features. Dionaea muscipula leaves provide a remarkable example of an optimized structure that, owing to the synergistic integration of bistability, material, and geometrical properties, permits to overcome the performance limits of purely diffusive processes. In this paper, a hygroscopic bistable structure (HBS) inspired by the Venus flytrap leaves is presented, obtained by bonding prestretched poly(dimethylsiloxane) (PDMS) layers prior to depositing electrospun polyethylene oxide (PEO) nanofibers. A hygroresponsive bilayer (HBL) is also obtained by electrospinning of PEO on an unstretched PDMS layer. The hygroscopic material (Young's modulus and hygroscopic expansion) is mechanically characterized so as to predict the response time of a bending HBL in response to a step humidity variation. The HBS response time (≈1 s) is sensibly lower than the one of purely diffusive HBL (≈10 s) thanks to bistability. An illustrative implementation is also presented, exploiting an HBS to trigger the curvature of a PDMS optical focusing system. The developed plant-inspired soft bistable structure can also be used for sensing (e.g., humidity), energy harvesting, as well as advanced soft robotics applications.
2020
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/533460
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 48
social impact