This paper proposes a novel framework and programming model for real-time applications supporting a declarative access to real-time CPU scheduling features that are available on an operating system. The core idea is to let applications declare their temporal characteristics and/or requirements on the CPU allocation, where, for example, some of them may require real-time POSIX priorities, whilst others might need resource reservations through SCHED_DEADLINE. The framework can properly handle such a set of heterogeneous requirements configuring an underlying multi-core platform so to exploit the various scheduling disciplines that are available in the kernel, matching applications requirements. The framework is realized as a modular architecture in which different plugins handle independently certain real-time scheduling features within the underlying kernel, easing the customization of its behavior to support other schedulers or operating systems by adding further plugins.

An Architecture for Declarative Real-Time Scheduling on Linux

Gabriele Serra;Gabriele Ara;Pietro Fara;Tommaso Cucinotta
2020

Abstract

This paper proposes a novel framework and programming model for real-time applications supporting a declarative access to real-time CPU scheduling features that are available on an operating system. The core idea is to let applications declare their temporal characteristics and/or requirements on the CPU allocation, where, for example, some of them may require real-time POSIX priorities, whilst others might need resource reservations through SCHED_DEADLINE. The framework can properly handle such a set of heterogeneous requirements configuring an underlying multi-core platform so to exploit the various scheduling disciplines that are available in the kernel, matching applications requirements. The framework is realized as a modular architecture in which different plugins handle independently certain real-time scheduling features within the underlying kernel, easing the customization of its behavior to support other schedulers or operating systems by adding further plugins.
File in questo prodotto:
File Dimensione Formato  
IEEE-ISORC-2020-DECL.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 231.16 kB
Formato Adobe PDF
231.16 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11382/534551
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact