One of the challenges in the healthcare sector is making accurate forecasts across insurance years for claims reserve. Healthcare claims present huge variability and heterogeneity influenced by random decisions of the courts and intrinsic characteristics of the damaged parties, which makes traditional methods for estimating reserves inadequate. We propose a new methodology to estimate claim reserves in the healthcare insurance system based on generalized linear models using the Overdispersed Poisson distribution function. In this context, we developed a method to estimate the parameters of the quasi-likelihood function using a Gauss–Newton algorithm optimized through a genetic algorithm. The genetic algorithm plays a crucial role in glimpsing the position of the global minimum to ensure a correct convergence of the Gauss–Newton method, where the choice of the initial guess is fundamental. This methodology is applied as a case study to the healthcare system of the Tuscany region. The results were validated by comparing them with state-of-the-art measurement of the confidence intervals of the Overdispersed Poisson distribution parameters with better outcomes. Hence, local healthcare authorities could use the proposed and improved methodology to allocate resources dedicated to healthcare and global management.

Stochastic Claims Reserve in the Healthcare System: A Methodology Applied to Italian Data

Mazzi, Claudio;Damone, Angelo
;
Vandelli, Andrea;Ciuti, Gastone;
2024-01-01

Abstract

One of the challenges in the healthcare sector is making accurate forecasts across insurance years for claims reserve. Healthcare claims present huge variability and heterogeneity influenced by random decisions of the courts and intrinsic characteristics of the damaged parties, which makes traditional methods for estimating reserves inadequate. We propose a new methodology to estimate claim reserves in the healthcare insurance system based on generalized linear models using the Overdispersed Poisson distribution function. In this context, we developed a method to estimate the parameters of the quasi-likelihood function using a Gauss–Newton algorithm optimized through a genetic algorithm. The genetic algorithm plays a crucial role in glimpsing the position of the global minimum to ensure a correct convergence of the Gauss–Newton method, where the choice of the initial guess is fundamental. This methodology is applied as a case study to the healthcare system of the Tuscany region. The results were validated by comparing them with state-of-the-art measurement of the confidence intervals of the Overdispersed Poisson distribution parameters with better outcomes. Hence, local healthcare authorities could use the proposed and improved methodology to allocate resources dedicated to healthcare and global management.
2024
File in questo prodotto:
File Dimensione Formato  
Stochastic_claims_reserve_Mazzi_Damone.pdf

accesso aperto

Tipologia: Documento in Post-print/Accepted manuscript
Licenza: Copyright dell'editore
Dimensione 508.63 kB
Formato Adobe PDF
508.63 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/562672
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact