Photonic neural networks offer energy-efficiency but suffer from noise-induced low precision. We propose AQ-PANN, which learns a quantization step size to mitigate noise. Experiments on SVHN show strong performance across bitwidths under different noise levels.
Mitigating Noise Effects in Photonic Neural Networks Using Adaptive Quantization
Paolini, E.;De Marinis, L.;Kincaid, P. S.;Valcarenghi, L.;Contestabile, G.;Andriolli, N.
2025-01-01
Abstract
Photonic neural networks offer energy-efficiency but suffer from noise-induced low precision. We propose AQ-PANN, which learns a quantization step size to mitigate noise. Experiments on SVHN show strong performance across bitwidths under different noise levels.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
Mitigating_Noise_Effects_in_Photonic_Neural_Networks_Using_Adaptive_Quantization.pdf
solo utenti autorizzati
Tipologia:
Documento in Pre-print/Submitted manuscript
Licenza:
Copyright dell'editore
Dimensione
729.06 kB
Formato
Adobe PDF
|
729.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

