Clinicians often deal with complex robotic platform and serious games in stroke patients rehabilitation contexts, and they face two main problems: 1) the interpretation of either the performance in game or measures of a robotic system from the motor recovery point of view, and 2) the duration and complexity of clinical scales administration that makes repetitive assessments during the therapy unpractical. In this paper, a Random Tree Forest based system was trained and tested to provide a prediction of different clinical outcomes (i.e. FMA, ARAT, and MI) along the whole therapy duration, having non-clinical measures only as inputs, acting as a simulated decision support system. The dataset includes 30 post-stroke patients, that underwent a 30-session robot-assisted rehabilitation treatment. Results have shown that the system is able to produce very accurate and reliable predictions about the motor recovery of the patient at the end of the therapy, already in the first phases of the rehabilitation (i40% of therapy execution), just using robotic platform measures. Such a tool would provide a great benefit in terms of rehabilitation objectives planning, as a decision support tool for highly personalized rehabilitation treatments.

A Decision Support System to Provide an Ongoing Prediction of Robot-Assisted Rehabilitation Outcome in Stroke Survivors

Camardella, C.
Primo
;
Aprile, I.;Cappiello, G.;Mazzoleni, S.
Penultimo
;
Frisoli, A.
Ultimo
2023-01-01

Abstract

Clinicians often deal with complex robotic platform and serious games in stroke patients rehabilitation contexts, and they face two main problems: 1) the interpretation of either the performance in game or measures of a robotic system from the motor recovery point of view, and 2) the duration and complexity of clinical scales administration that makes repetitive assessments during the therapy unpractical. In this paper, a Random Tree Forest based system was trained and tested to provide a prediction of different clinical outcomes (i.e. FMA, ARAT, and MI) along the whole therapy duration, having non-clinical measures only as inputs, acting as a simulated decision support system. The dataset includes 30 post-stroke patients, that underwent a 30-session robot-assisted rehabilitation treatment. Results have shown that the system is able to produce very accurate and reliable predictions about the motor recovery of the patient at the end of the therapy, already in the first phases of the rehabilitation (i40% of therapy execution), just using robotic platform measures. Such a tool would provide a great benefit in terms of rehabilitation objectives planning, as a decision support tool for highly personalized rehabilitation treatments.
File in questo prodotto:
File Dimensione Formato  
A_Decision_Support_System_to_Provide_an_Ongoing_Prediction_of_Robot-Assisted_Rehabilitation_Outcome_in_Stroke_Survivors_compressed.pdf

accesso aperto

Tipologia: PDF Editoriale
Licenza: Copyright dell'editore
Dimensione 191.08 kB
Formato Adobe PDF
191.08 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/582884
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 5
social impact