This paper introduces a novel architecture of Wave Energy Converter (WEC) provided with a Dielectric Elastomer (DE) Power Take-Off (PTO) system. The device, named Poly-Buoy, includes a heaving buoy as primary interface, that captures the mechanical energy from waves, and a DE Generator (DEG), made by stacked layers of silicone elastomer, that converts mechanical energy into electricity. A mathematical model of the Poly-Buoy is proposed, which includes analytical electro-hyperlastic equations for the DEG and a linear model for wave-buoy hydrodynamics. Procedures for the design and optimization of different layouts and control strategies for the DE-PTO are introduced that specifically consider single-DEG and dual-DEG architectures. A numerical case study is also reported for specific geometrical dimensions of the buoy and specific wave climate data.

Modeling of a heaving buoy wave energy converter with stacked dielectric elastomer generator

FONTANA, Marco;VERTECHY, ROCCO
2014-01-01

Abstract

This paper introduces a novel architecture of Wave Energy Converter (WEC) provided with a Dielectric Elastomer (DE) Power Take-Off (PTO) system. The device, named Poly-Buoy, includes a heaving buoy as primary interface, that captures the mechanical energy from waves, and a DE Generator (DEG), made by stacked layers of silicone elastomer, that converts mechanical energy into electricity. A mathematical model of the Poly-Buoy is proposed, which includes analytical electro-hyperlastic equations for the DEG and a linear model for wave-buoy hydrodynamics. Procedures for the design and optimization of different layouts and control strategies for the DE-PTO are introduced that specifically consider single-DEG and dual-DEG architectures. A numerical case study is also reported for specific geometrical dimensions of the buoy and specific wave climate data.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/498582
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
social impact