In the field of rehabilitation robotics, few researchers have been focusing on the problem of controlling motor coordination in post-stroke patients. Studies on coordination learning, when the robotic devices act at the joint level on multiple interaction points, as in the case of exoskeletons, are lacking. For this reason, we studied on 10 healthy subjects the possibility of learning a non-natural inter-joint coordination while performing a pointing task. This coordination was induced by a 4-DOF robotic exoskeleton, applying resistive force fields at the joint level. Preliminary results showed the capability of our controller to modify human healthy natural coordination after exposition to the fields and generalization of these effects to movements which were never exposed to these constraints.
Learning motor coordination under resistive viscous force fields at the joint level with an upper-limb robotic exoskeleton
Proietti T.;
2017-01-01
Abstract
In the field of rehabilitation robotics, few researchers have been focusing on the problem of controlling motor coordination in post-stroke patients. Studies on coordination learning, when the robotic devices act at the joint level on multiple interaction points, as in the case of exoskeletons, are lacking. For this reason, we studied on 10 healthy subjects the possibility of learning a non-natural inter-joint coordination while performing a pointing task. This coordination was induced by a 4-DOF robotic exoskeleton, applying resistive force fields at the joint level. Preliminary results showed the capability of our controller to modify human healthy natural coordination after exposition to the fields and generalization of these effects to movements which were never exposed to these constraints.File | Dimensione | Formato | |
---|---|---|---|
2016_ICNR.pdf
non disponibili
Tipologia:
PDF Editoriale
Licenza:
Copyright dell'editore
Dimensione
286.9 kB
Formato
Adobe PDF
|
286.9 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.