The use of soft materials to transmit power to the human body has numerous advantages, amongst which safety and kinematic transparency stand out. In previous work we showed that a tethered fabric-based exosuit for the elbow joint, driven by an electric motor through a Bowden cable transmission, reduces the muscular effort associated with flexion movements by working in parallel with its wearer's muscles. We herein propose a refined design of the suit and present an untethered control architecture for gravity compensation and motion-intention detection. The architecture comprises four interconnected modules for power management, low-level motor control and high-level signal processing and data streaming. The controller uses a silicone stretch sensor and a miniature load cell, integrated in the fabric frame, to estimate and minimise the torque that its user needs to exert to perform a movement. We show that the device relieves its wearer from an average of 77% of the total moment required to sustain and move a light weight, with a consequent average reduction in muscular effort of 64.5%.

Design and embedded control of a soft elbow exosuit

Chiaradia D.
;
Frisoli A.;
2018-01-01

Abstract

The use of soft materials to transmit power to the human body has numerous advantages, amongst which safety and kinematic transparency stand out. In previous work we showed that a tethered fabric-based exosuit for the elbow joint, driven by an electric motor through a Bowden cable transmission, reduces the muscular effort associated with flexion movements by working in parallel with its wearer's muscles. We herein propose a refined design of the suit and present an untethered control architecture for gravity compensation and motion-intention detection. The architecture comprises four interconnected modules for power management, low-level motor control and high-level signal processing and data streaming. The controller uses a silicone stretch sensor and a miniature load cell, integrated in the fabric frame, to estimate and minimise the torque that its user needs to exert to perform a movement. We show that the device relieves its wearer from an average of 77% of the total moment required to sustain and move a light weight, with a consequent average reduction in muscular effort of 64.5%.
2018
978-1-5386-4516-1
File in questo prodotto:
File Dimensione Formato  
03_p_2018_Robosoft_Elbow_Exosuit.pdf

non disponibili

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Copyright dell'editore
Dimensione 2.64 MB
Formato Adobe PDF
2.64 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/555052
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 68
social impact