In data-plane deployment of DNNs allows for improved edge functionality and intrusion detection. We report on the increased resilience of in-switch LUT-distilled neural networks to whitebox and black-box adversarial attacks.
Assessing the Robustness of In-Switch Neural Networks Against Adversarial DDoS Attacks
Zingrillo, Giulio;Paolini, Emilio;Andriolli, Nicola;Paolucci, Francesco;Cugini, Filippo;Contestabile, Giampiero;Castoldi, Piero;De Marinis, Lorenzo
2025-01-01
Abstract
In data-plane deployment of DNNs allows for improved edge functionality and intrusion detection. We report on the increased resilience of in-switch LUT-distilled neural networks to whitebox and black-box adversarial attacks.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
Assessing_the_Robustness_of_In-Switch_Neural_Networks_Against_Adversarial_DDoS_Attacks.pdf
solo utenti autorizzati
Tipologia:
Documento in Pre-print/Submitted manuscript
Licenza:
Copyright dell'editore
Dimensione
440.25 kB
Formato
Adobe PDF
|
440.25 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

