This paper examines the design and control of a robotic arm inspired by the anatomy and neurophysiology of Octopus vulgaris in light of embodiment theory. Embodiment in an animal is defined as the dynamic coupling between sensorymotor control, anatomy, materials, and the environment that allows for the animal to achieve effective behaviour. Octopuses in particular are highly embodied and dexterous animals: their arms are fully flexible, can bend in any direction, grasp objects and modulate stiffness along their length.

The Application of Embodiment Theory to the Design and Control of an Octopus-like Robotic Arm

CIANCHETTI, Matteo;FOLLADOR, Maurizio;
2012-01-01

Abstract

This paper examines the design and control of a robotic arm inspired by the anatomy and neurophysiology of Octopus vulgaris in light of embodiment theory. Embodiment in an animal is defined as the dynamic coupling between sensorymotor control, anatomy, materials, and the environment that allows for the animal to achieve effective behaviour. Octopuses in particular are highly embodied and dexterous animals: their arms are fully flexible, can bend in any direction, grasp objects and modulate stiffness along their length.
2012
9781467314039
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/354843
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
social impact