Variable stiffness actuators (VSA) are fostered in robotics for their capability to address physical interaction with a physically adjustable compliance, being advantageous in terms of efficiency, safety and adaptability to unknown environments. Here we introduce the concept of a switching VSA (sVSA), in which a single actuator is used to control the position or the stiffness of a robotic joint according to a mechanical switch. Despite not allowing simultaneous control of both quantities, this architecture has the potential to make the design lighter, requiring one continuously powered actuator, controllable in position, and one additional switch, activated only occasionally between two limit stages: the advantages are the separation of the motors power requirements and a simpler control. A first prototype of a 1-DoF revolute variable-stiffness joint has been built, based on the vsaUT-II developed at the University of Twente, with a novel clutch mechanism allowing continuous and efficient switching. The prototype proved functionality and feasibility of the sVSA concept.

A clutch mechanism for switching between position and stiffness control of a variable stiffness actuator

CEMPINI, Marco;VITIELLO, Nicola;
2015

Abstract

Variable stiffness actuators (VSA) are fostered in robotics for their capability to address physical interaction with a physically adjustable compliance, being advantageous in terms of efficiency, safety and adaptability to unknown environments. Here we introduce the concept of a switching VSA (sVSA), in which a single actuator is used to control the position or the stiffness of a robotic joint according to a mechanical switch. Despite not allowing simultaneous control of both quantities, this architecture has the potential to make the design lighter, requiring one continuously powered actuator, controllable in position, and one additional switch, activated only occasionally between two limit stages: the advantages are the separation of the motors power requirements and a simpler control. A first prototype of a 1-DoF revolute variable-stiffness joint has been built, based on the vsaUT-II developed at the University of Twente, with a novel clutch mechanism allowing continuous and efficient switching. The prototype proved functionality and feasibility of the sVSA concept.
978-1-4799-6923-4
978-1-4799-6923-4
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11382/510380
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
social impact