This paper presents a realtime locomotion mode recognition method for an active pelvis orthosis. Five locomotion modes, including sitting, standing still, level-ground walking, ascending stairs, and descending stairs, are taken into consideration. The recognition is performed with locomotion information measured by the onboard hip angle sensors and the pressure insoles. These five modes are firstly divided into static modes and dynamic modes, and the two kinds are classified by monitoring the variation of the relative hip angles of the two legs within a pre-defined period. Static states are further classified into sitting and standing still based on the absolute hip angle. As for dynamic modes, a fuzzy-logic based method is proposed for the recognition. Two event-based locomotion features, including the hip joint angle at the first foot-strike and the center of foot pressure at the first foot-strike are used to calculate the membership of different modes based on the membership function, and the mode with the maximal membership is selected as the target mode. Experimental results with three subjects achieve an average recognition accuracy of 99.87% and average recognition delay of 18.12% of one gait cycle.

A realtime locomotion mode recognition method for an active pelvis orthosis

PARRI, ANDREA;YAN, Tingfang;VITIELLO, Nicola
2015-01-01

Abstract

This paper presents a realtime locomotion mode recognition method for an active pelvis orthosis. Five locomotion modes, including sitting, standing still, level-ground walking, ascending stairs, and descending stairs, are taken into consideration. The recognition is performed with locomotion information measured by the onboard hip angle sensors and the pressure insoles. These five modes are firstly divided into static modes and dynamic modes, and the two kinds are classified by monitoring the variation of the relative hip angles of the two legs within a pre-defined period. Static states are further classified into sitting and standing still based on the absolute hip angle. As for dynamic modes, a fuzzy-logic based method is proposed for the recognition. Two event-based locomotion features, including the hip joint angle at the first foot-strike and the center of foot pressure at the first foot-strike are used to calculate the membership of different modes based on the membership function, and the mode with the maximal membership is selected as the target mode. Experimental results with three subjects achieve an average recognition accuracy of 99.87% and average recognition delay of 18.12% of one gait cycle.
2015
9781479999941
9781479999941
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/510381
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
social impact