In this paper we present a novel method for predicting individual fingers movements from surface electromyography (EMG). The method is intended for real-time dexterous control of a multifunctional prosthetic hand device. The EMG data was recorded using 16 single-ended channels positioned on the forearm of healthy participants. Synchronously with the EMG recording, the subjects performed consecutive finger movements based on the visual cues. Our algorithm could be described in following steps: extracting mean average value (MAV) of the EMG to be used as the feature for classification, piece-wise linear modeling of EMG feature dynamics, implementation of hierarchical hidden Markov models (HHMM) to capture transitions between linear models, and implementation of Bayesian inference as the classifier. The performance of our classifier was evaluated against commonly used real-time classifiers. The results show that the current algorithm setup classifies EMG data similarly to the best among tested classifiers but with equal or less computational complexity.

Decoding of individual finger movements from surface EMG signals using vector autoregressive hierarchical hidden Markov models (VARHHMM)

Kanitz, Gunter;Controzzi, Marco;Cipriani, Christian;
2017-01-01

Abstract

In this paper we present a novel method for predicting individual fingers movements from surface electromyography (EMG). The method is intended for real-time dexterous control of a multifunctional prosthetic hand device. The EMG data was recorded using 16 single-ended channels positioned on the forearm of healthy participants. Synchronously with the EMG recording, the subjects performed consecutive finger movements based on the visual cues. Our algorithm could be described in following steps: extracting mean average value (MAV) of the EMG to be used as the feature for classification, piece-wise linear modeling of EMG feature dynamics, implementation of hierarchical hidden Markov models (HHMM) to capture transitions between linear models, and implementation of Bayesian inference as the classifier. The performance of our classifier was evaluated against commonly used real-time classifiers. The results show that the current algorithm setup classifies EMG data similarly to the best among tested classifiers but with equal or less computational complexity.
2017
9781538622964
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/520709
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
social impact