In the last century, medicine showed considerable advancements in terms of new technologies, devices and diagnostic/therapeutic strategies. Those advantages led to a significant reduction of invasiveness and an improvement of surgical outcomes. In this framework, a computer-assisted surgical robotic platform able to perform non-invasive Focused Ultrasound Surgery (FUS) - the FUTURA platform - has the ambitious goal to improve accuracy, safety and flexibility of the treatment, with respect to current FUS procedures. Aim of this work is to present the current implementation of the robotic platform and the preliminary results about high intensity focused ultrasound (HIFU) delivery in in-vitro conditions, under 3D ultrasound identification and monitoring. Tests demonstrated that the average accuracy of the HIFU delivery is lower than 0.7 mm in both X and Y radial directions and 3.7 mm in the axial direction (Z) with respect to the HIFU transducer active surface.
A computer-assisted robotic platform for Focused Ultrasound Surgery: Assessment of high intensity focused ultrasound delivery
CAFARELLI, ANDREA;MURA, MARCO;DIODATO, ALESSANDRO;Schiappacasse, Andrea;CIUTI, GASTONE;MENCIASSI, Arianna
2015-01-01
Abstract
In the last century, medicine showed considerable advancements in terms of new technologies, devices and diagnostic/therapeutic strategies. Those advantages led to a significant reduction of invasiveness and an improvement of surgical outcomes. In this framework, a computer-assisted surgical robotic platform able to perform non-invasive Focused Ultrasound Surgery (FUS) - the FUTURA platform - has the ambitious goal to improve accuracy, safety and flexibility of the treatment, with respect to current FUS procedures. Aim of this work is to present the current implementation of the robotic platform and the preliminary results about high intensity focused ultrasound (HIFU) delivery in in-vitro conditions, under 3D ultrasound identification and monitoring. Tests demonstrated that the average accuracy of the HIFU delivery is lower than 0.7 mm in both X and Y radial directions and 3.7 mm in the axial direction (Z) with respect to the HIFU transducer active surface.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.