Bioinspired robotics is a promising technology for minimizing environmental disruption during underwater inspection, exploration, and monitoring. In this research, we propose a control strategy for an underactuated robotic fish that mimics the oscillatory movement of a real fish’s tail using only one DC motor. Our control strategy is bioinspired to Central Pattern Generators (CPGs) and integrates proprioceptive sensory feedback. Specifically, we introduced the angular position of the tail as an input control variable to integrate a feedback into CPG circuits. This makes the controller adaptive to changes in the tail structure, weight, or the environment in which the robotic fish swims, allowing it to change its swimming speed and steering performance. Our robotic fish can swim at a speed between 0.18 and 0.26 body lengths per second (BL/s), with a tail beating frequency between 1.7 and 2.3 Hz. It can also vary its steering angular speed in the range of 0.08 rad/s, with a relative change in the curvature radius of 0.25 m. With modifications to the modular design, we can further improve the speed and steering performance while maintaining the developed control strategy. This research highlights the potential of bioinspired robotics to address pressing environmental challenges while improving solutions efficiency, reliability and reducing development costs.

Underactuated Robotic Fish Control: Maneuverability and Adaptability Through Proprioceptive Feedback

Manduca, Gianluca
;
Santaera, Gaspare;Dario, Paolo;Stefanini, Cesare;Romano, Donato
2023-01-01

Abstract

Bioinspired robotics is a promising technology for minimizing environmental disruption during underwater inspection, exploration, and monitoring. In this research, we propose a control strategy for an underactuated robotic fish that mimics the oscillatory movement of a real fish’s tail using only one DC motor. Our control strategy is bioinspired to Central Pattern Generators (CPGs) and integrates proprioceptive sensory feedback. Specifically, we introduced the angular position of the tail as an input control variable to integrate a feedback into CPG circuits. This makes the controller adaptive to changes in the tail structure, weight, or the environment in which the robotic fish swims, allowing it to change its swimming speed and steering performance. Our robotic fish can swim at a speed between 0.18 and 0.26 body lengths per second (BL/s), with a tail beating frequency between 1.7 and 2.3 Hz. It can also vary its steering angular speed in the range of 0.08 rad/s, with a relative change in the curvature radius of 0.25 m. With modifications to the modular design, we can further improve the speed and steering performance while maintaining the developed control strategy. This research highlights the potential of bioinspired robotics to address pressing environmental challenges while improving solutions efficiency, reliability and reducing development costs.
2023
978-3-031-38856-9
978-3-031-38857-6
File in questo prodotto:
File Dimensione Formato  
Manduca et al_Living Machines_2023.pdf

accesso aperto

Tipologia: Documento in Pre-print/Submitted manuscript
Licenza: Altro
Dimensione 16.88 MB
Formato Adobe PDF
16.88 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11382/557792
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
social impact